Genetic effects and modifiers of radiotherapy and chemotherapy on survival in pancreatic cancer.
OBJECTIVES: Germ-line genetic variation may affect clinical outcomes of cancer patients. We applied a candidate-gene approach to evaluate the effect of putative markers on survival of patients with pancreatic cancer. We also examined gene-radiotherapy and gene-chemotherapy interactions, aiming to explain interindividual differences in treatment outcomes. METHODS: In total, 211 patients with pancreatic cancer were recruited in a population-based study. Sixty-four candidate genes associated with cancer survival or treatment response were selected from existing publications. Genotype information was obtained from a previous genome-wide association study data set. The main effects of genetic variation and gene-specific treatment interactions on overall survival were examined by proportional hazards regression models. RESULTS: Fourteen genes showed evidence of association with pancreatic cancer survival. Among these, rs1760217, located at the DPYD gene; rs17091162 at SERPINA3; and rs2231164 at ABCG2 had the lowest P of 10(-4.60), 0.0013, and 0.0023, respectively. We also observed that 2 genes, RRM1 and IQGAP2, had significant interactions with radiotherapy in association with survival, and 2 others, TYMS and MET, showed evidence of interaction with 5-fluorouracil and erlotinib, respectively. CONCLUSIONS: Our study suggested significant associations between germ-line genetic polymorphisms and overall survival in pancreatic cancer, as well as survival interactions between various genes and radiotherapy and chemotherapy.